This commit is contained in:
2025-11-14 09:37:35 -08:00
parent 7a9cd2f70e
commit 3593d8cbd2
11 changed files with 5 additions and 4 deletions

View File

@@ -0,0 +1,308 @@
//
// Created by Luca on 9/21/2025.
//
#include "SHAL_ADC.h"
#include "SHAL_GPIO.h"
#include "SHAL_UART.h"
#include <cstdio>
SHAL_Result SHAL_ADC::init(ADC_Key key) {
m_ADCKey = key;
if(!isValid()){
SHAL_UART2.sendString("Not valid\r\n");
return SHAL_Result::ERROR;
}
SHAL_ADC_RCC_Enable_Reg clock_reg = getADCRCCEnableRegister(m_ADCKey); //Clock enable
SHAL_apply_bitmask(clock_reg.reg,clock_reg.mask);
auto clock_select_register = getADCClockSelectRegister();
SHAL_set_bits(clock_select_register.reg, 2, static_cast<uint32_t>(ADC_Clock_Source::SHAL_SYSCLK),clock_select_register.offset); //Set ADC clock
wakeFromDeepSleep();
if(calibrate() != SHAL_Result::OKAY){ //Calibrate
SHAL_UART2.sendString("Calibration failed");
return SHAL_Result::ERROR;
}
if(enable() != SHAL_Result::OKAY){
SHAL_UART2.sendString("Could not enable from init\r\n");
return SHAL_Result::ERROR;
}
configureAlignment(SHAL_ADC_Alignment::RIGHT);
configureResolution(SHAL_ADC_Resolution::B12);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::calibrate() {
SHAL_ADC_Control_Reg control_reg = getADCControlReg(m_ADCKey);
if(disable() != SHAL_Result::OKAY){
return SHAL_Result::ERROR;
}
SHAL_delay_us(1000);
if ((*control_reg.reg & (control_reg.enable_mask | control_reg.disable_mask)) != 0) {
return SHAL_Result::ERROR;
}
SHAL_clear_bitmask(control_reg.reg, control_reg.differential_mode_mask);
SHAL_apply_bitmask(control_reg.reg, control_reg.calibration_mask);
if ((*control_reg.reg & control_reg.calibration_mask) == 0) {
return SHAL_Result::ERROR;
}
if (!SHAL_WAIT_FOR_CONDITION_US(((*control_reg.reg & control_reg.calibration_mask) != 0),500)) { //Wait for conversion
return SHAL_Result::ERROR; //Failed sequence
}
SHAL_UART2.sendString("Calibration OK\r\n");
return SHAL_Result::OKAY;
}
uint16_t SHAL_ADC::singleConvertSingle(SHAL_ADC_Channel channel, SHAL_ADC_SampleTime time) {
auto data_reg = getADCDataReg(m_ADCKey);
auto ISR_reg = getADCISRReg(m_ADCKey);
auto config_reg = getADCConfigReg(m_ADCKey);
SHAL_clear_bitmask(config_reg.reg, config_reg.continuous_mode_mask);
auto sampleTimeReg = getADCChannelSamplingTimeRegister(m_ADCKey, channel);
SHAL_set_bits(sampleTimeReg.reg, 3, static_cast<uint8_t>(time), sampleTimeReg.channel_offset);
addADCChannelToSequence(channel, 0);
if(setADCSequenceAmount(1) == SHAL_Result::ERROR) { return 0; }
if(enable() != SHAL_Result::OKAY) {
return 0;
}
// CRITICAL: Clear ALL relevant flags before starting
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_sequence_mask);
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_conversion_mask);
if(ISR_reg.overrun_mask) {
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.overrun_mask);
}
volatile uint16_t dummy = *data_reg.reg;
(void)dummy;
startConversion();
if(!SHAL_WAIT_FOR_CONDITION_US(((*ISR_reg.reg & ISR_reg.end_of_conversion_mask) != 0), 2000)) {
return 0;
}
uint16_t result = *data_reg.reg;
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_conversion_mask);
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.end_of_sequence_mask);
return result;
}
SHAL_Result SHAL_ADC::multiConvertSingle(SHAL_ADC_Channel* channels, const int numChannels, uint16_t* result, SHAL_ADC_SampleTime time) {
auto data_reg = getADCDataReg(m_ADCKey); //Where our output will be stored
setADCSequenceAmount(numChannels); //Convert the correct amount of channels
for(int i = 0; i < numChannels; i++){
auto channel = channels[i];
auto sampleTimeReg = getADCChannelSamplingTimeRegister(m_ADCKey,channel);
SHAL_set_bits(sampleTimeReg.reg,3,static_cast<uint8_t>(time),sampleTimeReg.channel_offset); //Set sample time register TODO un-hardcode bit width?
addADCChannelToSequence(channel,i); //Use index 0 to convert channel
}
startConversion(); //Start ADC conversion
auto ISR_reg = getADCISRReg(m_ADCKey);
for(int i = 0; i < numChannels; i++) {
if (!SHAL_WAIT_FOR_CONDITION_US(((*ISR_reg.reg & ISR_reg.end_of_conversion_mask) != 0),500)) { //Wait for conversion
return SHAL_Result::ERROR; //Failed conversion
}
result[i] = *data_reg.reg;
}
if (!SHAL_WAIT_FOR_CONDITION_US(((*ISR_reg.reg & ISR_reg.end_of_sequence_mask) != 0),500)) { //Wait for conversion
return SHAL_Result::ERROR; //Failed sequence
}
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::enable() {
if(!isValid()){
SHAL_UART2.sendString("Enable failed: Invalid \r\n");
return SHAL_Result::ERROR;
}
SHAL_ADC_Control_Reg control_reg = getADCControlReg(m_ADCKey);
SHAL_ADC_ISR_Reg ISR_reg = getADCISRReg(m_ADCKey);
if(!SHAL_WAIT_FOR_CONDITION_MS((*control_reg.reg & control_reg.calibration_mask) == 0, 100)) {
return SHAL_Result::ERROR;
}
if (*control_reg.reg & control_reg.enable_mask) {
return SHAL_Result::OKAY; //Not an error
}
if (*control_reg.reg & control_reg.disable_mask) {
return SHAL_Result::ERROR;
}
//Clear ADRDY flag by writing 1 to it
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.ready_mask);
//Enable the ADC by setting ADEN
SHAL_apply_bitmask(control_reg.reg, control_reg.enable_mask);
if(!SHAL_WAIT_FOR_CONDITION_MS((*ISR_reg.reg & ISR_reg.ready_mask) != 0, 100)) {
return SHAL_Result::ERROR;
}
//Clear ADRDY again
SHAL_apply_bitmask(ISR_reg.reg, ISR_reg.ready_mask);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::wakeFromDeepSleep() {
SHAL_ADC_Control_Reg control_reg = getADCControlReg(m_ADCKey); //ADC Control register
SHAL_clear_bitmask(control_reg.reg,control_reg.deep_power_down_mask); //Wake ADC from sleep
SHAL_apply_bitmask(control_reg.reg,control_reg.voltage_regulator_mask);
SHAL_delay_us(50); //Wait for regulator to stabilize
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::disable() {
if(!isValid()){
return SHAL_Result::ERROR;
}
auto control_reg = getADCControlReg(m_ADCKey);
//Stop any ongoing conversion
if (*control_reg.reg & control_reg.start_mask) {
SHAL_apply_bitmask(control_reg.reg, control_reg.stop_mask);
}
//Only disable if ADC is enabled otherwise it hangs
if (*control_reg.reg & control_reg.enable_mask) {
SHAL_apply_bitmask(control_reg.reg, control_reg.disable_mask);
if (!SHAL_WAIT_FOR_CONDITION_MS(((*control_reg.reg & (control_reg.enable_mask | control_reg.disable_mask)) == 0),500)){
return SHAL_Result::ERROR;
}
}
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::startConversion() {
auto control_reg = getADCControlReg(m_ADCKey);
SHAL_apply_bitmask(control_reg.reg,control_reg.start_mask);
return SHAL_Result::OKAY;
}
bool SHAL_ADC::isValid() {
if(m_ADCKey == ADC_Key::INVALID || m_ADCKey == ADC_Key::NUM_ADC){
return false;
}
return true;
}
SHAL_Result SHAL_ADC::configureResolution(SHAL_ADC_Resolution resolution) {
if(!isValid()){
return SHAL_Result::ERROR;
}
SHAL_ADC_Config_Reg config_reg = getADCConfigReg(m_ADCKey);
SHAL_set_bits(config_reg.reg,2,static_cast<uint8_t>(resolution),config_reg.resolution_offset);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::configureAlignment(SHAL_ADC_Alignment alignment) {
if(!isValid()){
return SHAL_Result::ERROR;
}
SHAL_ADC_Config_Reg config_reg = getADCConfigReg(m_ADCKey);
//TODO check if this needs to be abstracted (Do other platforms have >2 resolution possibilities?
SHAL_set_bits(config_reg.reg,1,static_cast<uint8_t>(alignment),config_reg.alignment_offset);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::setADCSequenceAmount(uint32_t amount) {
if(!isValid()){return SHAL_Result::ERROR;}
if(amount == 0){
return SHAL_Result::ERROR;
}
SHAL_ADC_Sequence_Amount_Reg sequence_amount_reg = getADCSequenceAmountRegister(m_ADCKey);
SHAL_set_bits(sequence_amount_reg.reg, 4, amount - 1, sequence_amount_reg.offset);
return SHAL_Result::OKAY;
}
SHAL_Result SHAL_ADC::addADCChannelToSequence(SHAL_ADC_Channel channel, uint32_t index) {
if(!isValid()) { return SHAL_Result::ERROR; }
auto sequenceRegisters = getADCSequenceRegisters(m_ADCKey);
auto channelNum = static_cast<uint8_t>(channel);
uint32_t bitSection = (index + 1) % 5;
uint32_t sequenceRegNumber = (index + 1) / 5;
volatile uint32_t* sequenceReg = sequenceRegisters.regs[sequenceRegNumber];
uint32_t bitSectionOffset = sequenceRegisters.offsets[bitSection];
// Clear only the specific 5 bits we're setting, not the entire register
uint32_t clearMask = ~(0x1F << bitSectionOffset);
*sequenceReg &= clearMask;
// Set the new channel number
*sequenceReg |= (channelNum << bitSectionOffset);
return SHAL_Result::OKAY;
}
SHAL_ADC &ADCManager::get(ADC_Key key) {
return m_ADCs[static_cast<uint8_t>(key)];
}
SHAL_ADC& ADCManager::getByIndex(int index) {
if(index < static_cast<int>(ADC_Key::NUM_ADC)){
return m_ADCs[index];
}
return m_ADCs[0];
}

View File

@@ -0,0 +1,126 @@
//
// Created by Luca on 8/30/2025.
//
#include <cstdio>
#include "SHAL_GPIO.h"
#include "SHAL_EXTI_CALLBACK.h"
#include "SHAL_UART.h"
SHAL_GPIO::SHAL_GPIO() : m_GPIO_KEY(GPIO_Key::INVALID){
//Do not initialize anything
}
SHAL_GPIO::SHAL_GPIO(GPIO_Key key) : m_GPIO_KEY(key) {
volatile unsigned long* gpioEnable = getGPIORCCEnable(key).reg;
unsigned long gpioOffset = getGPIORCCEnable(key).offset;
*gpioEnable |= (1 << gpioOffset); //Set enable flag
}
void SHAL_GPIO::setLow() {
auto outputDataReg = getGPIOOutputDataRegister(m_GPIO_KEY);
SHAL_set_bits(outputDataReg.reg,1,0,outputDataReg.offset);
}
void SHAL_GPIO::setHigh() {
auto outputDataReg = getGPIOOutputDataRegister(m_GPIO_KEY);
SHAL_set_bits(outputDataReg.reg,1,1,outputDataReg.offset);
}
void SHAL_GPIO::toggle() volatile {
auto outputDataReg = getGPIOOutputDataRegister(m_GPIO_KEY);
SHAL_flip_bits(outputDataReg.reg,1,outputDataReg.offset);
}
void SHAL_GPIO::setOutputType(PinType type) volatile {
auto outputTypeReg = getGPIOOutputTypeRegister(m_GPIO_KEY);
SHAL_set_bits(outputTypeReg.reg,2,static_cast<uint8_t>(type),outputTypeReg.offset);
}
void SHAL_GPIO::setOutputSpeed(OutputSpeed speed) volatile {
auto outputSpeedReg = getGPIOOutputSpeedRegister(m_GPIO_KEY);
SHAL_set_bits(outputSpeedReg.reg,2,static_cast<uint8_t>(speed),outputSpeedReg.offset);
}
void SHAL_GPIO::setInternalResistor(InternalResistorType type) volatile {
auto pupdreg = getGPIOPUPDRegister(m_GPIO_KEY);
SHAL_set_bits(pupdreg.reg,2,static_cast<uint8_t>(type),pupdreg.offset);
}
void SHAL_GPIO::setAlternateFunction(GPIO_Alternate_Function AF) volatile {
auto alternateFunctionReg = getGPIOAlternateFunctionRegister(m_GPIO_KEY);
SHAL_set_bits(alternateFunctionReg.reg,4,static_cast<uint8_t>(AF),alternateFunctionReg.offset);
}
SHAL_Result SHAL_GPIO::setPinMode(PinMode mode) volatile {
auto pinModeReg = getGPIOModeRegister(m_GPIO_KEY);
if(mode == PinMode::ANALOG_MODE && getGPIOPortInfo(m_GPIO_KEY).ADCChannel == SHAL_ADC_Channel::NO_ADC_MAPPING){
char buff[100];
sprintf(buff, "Error: GPIO pin %d has no valid ADC mapping\r\n", static_cast<uint8_t>(m_GPIO_KEY));
SHAL_UART2.sendString(buff);
return SHAL_Result::ERROR;
}
SHAL_set_bits(pinModeReg.reg,2,static_cast<uint8_t>(mode),pinModeReg.offset); //Set mode
return SHAL_Result::OKAY;
}
void SHAL_GPIO::useAsExternalInterrupt(TriggerMode mode, EXTICallback callback) {
/* ---- Connect PB6 to EXTI6 via SYSCFG ---- */
uint32_t port_b_val = 1; // 0=A, 1=B, 2=C, 3=D, etc.
SYSCFG->EXTICR[1] &= ~(0xFUL << 8); // Clear EXTI6 bits (bits 8-11)
SYSCFG->EXTICR[1] |= (port_b_val << 8); // Set EXTI6 to PB6
/* ---- Configure EXTI line 6 ---- */
EXTI->IMR1 |= (1UL << 6); // Unmask line 6
EXTI->RTSR1 |= (1UL << 6); // Rising trigger enable
EXTI->FTSR1 &= ~(1UL << 6); // Falling trigger disable
/* ---- Enable NVIC interrupt for EXTI lines [9:5] ---- */
NVIC_SetPriority(EXTI9_5_IRQn, 2);
NVIC_EnableIRQ(EXTI9_5_IRQn);
__enable_irq(); //Enable IRQ just in case
}
uint16_t SHAL_GPIO::analogRead(SHAL_ADC_SampleTime sampleTime) {
SHAL_ADC_Channel channel = getGPIOPortInfo(m_GPIO_KEY).ADCChannel;
return GPIOManager::getGPIOADC().singleConvertSingle(channel,sampleTime);
}
void SHAL_GPIO::setAlternateFunction(GPIO_Alternate_Function_Mapping AF) volatile {
setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
auto alternateFunctionReg = getGPIOAlternateFunctionRegister(m_GPIO_KEY);
SHAL_set_bits(alternateFunctionReg.reg,4,static_cast<uint8_t>(AF),alternateFunctionReg.offset);
}
uint16_t SHAL_GPIO::digitalRead() {
auto inputDataReg = getGPIOInputDataRegister(m_GPIO_KEY);
if((*inputDataReg.reg & (1 << 6)) != 0){
return 1;
}
return 0;
}
SHAL_GPIO& GPIOManager::get(GPIO_Key key) {
unsigned int gpioPort = getGPIOPortNumber(key);
uint8_t gpioPin = getGPIOPinNumber(key);
if (m_gpios[gpioPort][gpioPin].m_GPIO_KEY == GPIO_Key::INVALID){
m_gpios[gpioPort][gpioPin] = SHAL_GPIO(key);
}
return m_gpios[gpioPort][gpioPin];
}

View File

@@ -0,0 +1,142 @@
//
// Created by Luca on 9/9/2025.
//
#include "SHAL_I2C.h"
#include "SHAL_GPIO.h"
#include "SHAL_UART.h"
void SHAL_I2C::init(I2C_Pair pair) volatile {
m_I2CPair = pair;
SHAL_I2C_Pair I2CPair = getI2CPair(pair); //Get the I2C_PAIR information to be initialized
//Get the SHAL_GPIO pins for this SHAL_I2C setup
GPIO_Key SCL_Key = I2CPair.SCL_Key; //SCL pin
GPIO_Key SDA_Key = I2CPair.SDA_Key; //SDA pin
SHAL_I2C_Enable_Reg pairI2CEnable = getI2CEnableReg(pair); //Register and mask to enable the I2C peripheral
*pairI2CEnable.reg &= ~pairI2CEnable.mask; //Enable I2C peripheral clock
GET_GPIO(SCL_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE); //Implicitly initializes and enables GPIO bus
GET_GPIO(SDA_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
GET_GPIO(SCL_Key).setAlternateFunction(I2CPair.SCL_Mask);
GET_GPIO(SDA_Key).setAlternateFunction(I2CPair.SDA_Mask);
//These may be abstracted further to support multiple I2C configurations
GET_GPIO(SCL_Key).setOutputType(PinType::OPEN_DRAIN);
GET_GPIO(SDA_Key).setOutputType(PinType::OPEN_DRAIN);
GET_GPIO(SCL_Key).setOutputSpeed(OutputSpeed::HIGH_SPEED);
GET_GPIO(SDA_Key).setOutputSpeed(OutputSpeed::HIGH_SPEED);
GET_GPIO(SCL_Key).setInternalResistor(InternalResistorType::PULLUP);
GET_GPIO(SDA_Key).setInternalResistor(InternalResistorType::PULLUP);
SHAL_I2C_Reset_Reg pairI2CReset = getI2CResetReg(pair);
*pairI2CEnable.reg |= pairI2CEnable.mask; //Enable I2C peripheral clock
*pairI2CReset.reg |= pairI2CReset.mask; //Reset peripheral
*pairI2CReset.reg &= ~pairI2CReset.mask; //Reset peripheral
}
void SHAL_I2C::setClockConfig(uint8_t prescaler, uint8_t dataSetupTime, uint8_t dataHoldTime, uint8_t SCLHighPeriod, uint8_t SCLLowPeriod) {
SHAL_I2C_Timing_Reg clockReg = getI2CTimerReg(m_I2CPair);
*clockReg.reg |= (prescaler << clockReg.prescaler_offset);
*clockReg.reg |= (dataSetupTime << clockReg.dataSetupTime_offset);
*clockReg.reg |= (dataHoldTime << clockReg.dataHoldTime_offset);
*clockReg.reg |= (SCLHighPeriod << clockReg.SCLHighPeriod_offset);
*clockReg.reg |= (SCLLowPeriod << clockReg.SCLLowPeriod_offset);
getI2CPair(m_I2CPair).I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
}
void SHAL_I2C::setClockConfig(uint32_t configuration) {
*getI2CTimerReg(m_I2CPair).reg = configuration;
getI2CPair(m_I2CPair).I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
}
void SHAL_I2C::masterWriteRead(uint8_t addr,const uint8_t* writeData, size_t writeLen, uint8_t* readData, size_t readLen) {
volatile I2C_TypeDef* I2CPeripheral = getI2CPair(m_I2CPair).I2CReg;
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_BUSY) == 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for not busy\r\n");
return;
}
//Write phase
if (writeLen > 0) {
//Configure: NBYTES = wlen, write mode, START
I2CPeripheral->CR2 = (addr << 1) | (writeLen << I2C_CR2_NBYTES_Pos) | I2C_CR2_START;
for (size_t i = 0; i < writeLen; i++) {
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_TXIS) != 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for TX\r\n");
return;
}
I2CPeripheral->TXDR = writeData[i];
}
//Wait until transfer complete
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_TC) != 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for TC\r\n");
return;
}
}
//Read phase
if (readLen > 0) {
SHAL_UART2.sendString("Read initiated\r\n");
I2CPeripheral->CR2 &= ~(I2C_CR2_NBYTES | I2C_CR2_SADD | I2C_CR2_RD_WRN);
I2CPeripheral->CR2 |= (addr << 1) |
I2C_CR2_RD_WRN |
(readLen << I2C_CR2_NBYTES_Pos) |
I2C_CR2_START | I2C_CR2_AUTOEND;
for (size_t i = 0; i < readLen; i++) {
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_RXNE) != 0 , 100)){
SHAL_UART2.sendString("I2C timed out waiting for RXNE\r\n");
return;
}
SHAL_UART2.sendString("Read byte");
readData[i] = static_cast<uint8_t>(I2CPeripheral->RXDR);
}
}
else{
I2CPeripheral->CR2 |= I2C_CR2_STOP;
}
}
void SHAL_I2C::masterWrite(uint8_t addr, const uint8_t *writeData, uint8_t writeLen) {
masterWriteRead(addr,writeData,writeLen,nullptr,0);
}
void SHAL_I2C::masterRead(uint8_t addr, uint8_t *readBuffer, uint8_t bytesToRead) {
masterWriteRead(addr,nullptr,0,readBuffer,bytesToRead);
}
uint8_t SHAL_I2C::masterWriteReadByte(uint8_t addr, const uint8_t *writeData, size_t writeLen) {
uint8_t val = 0;
masterWriteRead(addr, writeData, writeLen, &val, 1);
return val;
}
SHAL_I2C& I2CManager::get(uint8_t I2CBus) {
if(I2CBus > NUM_I2C_BUSES - 1){
assert(false);
//Memory fault
}
return m_I2CBuses[I2CBus];
}

View File

@@ -0,0 +1,117 @@
//
// Created by Luca on 8/28/2025.
//
#include "SHAL_TIM.h"
#include <cassert>
Timer::Timer(Timer_Key key) : m_key(key){
}
Timer::Timer() : m_key(Timer_Key::S_TIM_INVALID){
}
void Timer::start() {
auto control_reg = getTimerControlRegister1(m_key);
auto event_generation_reg = getTimerEventGenerationRegister(m_key);
auto status_reg = getTimerStatusRegister(m_key);
SHAL_apply_bitmask(control_reg.reg, control_reg.counter_enable_mask); //Enable counter
SHAL_apply_bitmask(control_reg.reg, control_reg.auto_reload_preload_enable_mask); //Preload enable (buffer)
SHAL_apply_bitmask(event_generation_reg.reg, event_generation_reg.update_generation_mask);
SHAL_clear_bitmask(status_reg.reg,status_reg.update_interrupt_flag_mask);
enableInterrupt();
}
void Timer::stop() {
auto control_reg = getTimerControlRegister1(m_key);
SHAL_clear_bitmask(control_reg.reg, control_reg.counter_enable_mask); //Enable counter
}
void Timer::setPrescaler(uint16_t presc) {
auto prescaler_reg = getTimerPrescalerRegister(m_key);
SHAL_set_register_value(prescaler_reg.reg,presc);
}
void Timer::setARR(uint16_t arr) {
auto autoreload_reg = getTimerAutoReloadRegister(m_key);
SHAL_set_register_value(autoreload_reg.reg,arr);
}
void Timer::enableInterrupt() {
auto dma_ier = getTimerDMAInterruptEnableRegister(m_key);
SHAL_apply_bitmask(dma_ier.reg,dma_ier.update_interrupt_enable_mask);
NVIC_EnableIRQ(getTimerIRQn(m_key)); //Enable the IRQn in the NVIC
}
void Timer::init(uint16_t prescaler, uint16_t autoReload) {
SHAL_TIM_RCC_Register rcc = getTimerRCC(m_key);
SHAL_apply_bitmask(rcc.reg,rcc.enable_mask);
setPrescaler(prescaler);
setARR(autoReload);
*getTimerStatusRegister(m_key).reg = 0;
*getTimerDMAInterruptEnableRegister(m_key).reg = 0;
}
void Timer::setPWMMode(SHAL_Timer_Channel channel, SHAL_TIM_Output_Compare_Mode outputCompareMode, SHAL_Timer_Channel_Main_Output_Mode mainOutputMode,
SHAL_Timer_Channel_Complimentary_Output_Mode complimentaryOutputMode) {
auto ccer = getTimerCaptureCompareEnableRegister(m_key);
auto ccmr1 = getTimerCaptureCompareModeRegistersOutput(m_key);
auto bdtr = getTimerBreakDeadTimeRegister(m_key);
uint8_t fullChannelModeMask = static_cast<uint8_t>(mainOutputMode) | (static_cast<uint8_t>(complimentaryOutputMode) << 2);
uint8_t channelNum = static_cast<uint8_t>(channel);
if (channelNum <= 3) {
uint32_t regNum = channelNum / 2; //TODO change later for support for channels 5 and 6
if (channelNum % 2 == 1) {
SHAL_set_bits(ccmr1.regs[regNum], 4, static_cast<uint8_t>(outputCompareMode),
ccmr1.output_compare_2_mode_offset);
} else {
SHAL_set_bits(ccmr1.regs[regNum], 4, static_cast<uint8_t>(outputCompareMode),
ccmr1.output_compare_1_mode_offset);
}
}
uint32_t offset = channelNum * 4;
if (static_cast<uint8_t>(m_key) > 3) {
fullChannelModeMask &= (0b0011); //Clear bits for complimentary output since channels 4,5,6 don't support it
}
SHAL_set_bits(ccer.reg, 4, fullChannelModeMask, offset);
SHAL_apply_bitmask(bdtr.reg, bdtr.main_output_enable_mask);
}
void Timer::setPWMDutyCycle(uint32_t dutyCycle) {
auto reg = getTimerCaptureCompareRegister(m_key);
SHAL_set_bits(reg.reg,16,dutyCycle,0);
}
Timer &TimerManager::get(Timer_Key timer_key) {
//Ensure that we don't try to get invalid timers
assert(timer_key != Timer_Key::S_TIM_INVALID && timer_key != Timer_Key::NUM_TIMERS);
Timer& selected = timers[static_cast<int>(timer_key)];
//Timer queried is not initialized yet (defaults to invalid)
if(selected.m_key == Timer_Key::S_TIM_INVALID){
timers[static_cast<int>(timer_key)] = Timer(timer_key); //Initialize TIMER_KEY
}
return timers[static_cast<int>(timer_key)];
}

View File

@@ -0,0 +1,16 @@
//
// Created by Luca on 8/28/2025.
//
#include "SHAL_TIM_CALLBACK.h"
DEFINE_TIMER_IRQ(Timer_Key::S_TIM1, TIM1_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM2, TIM2_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM6, TIM6_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM7, TIM7_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM15, TIM1_BRK_TIM15_IRQHandler)
DEFINE_TIMER_IRQ(Timer_Key::S_TIM16, TIM1_UP_TIM16_IRQHandler)
void registerTimerCallback(Timer_Key key, TimerCallback callback){
timer_callbacks[static_cast<uint32_t>(key)] = callback;
}

View File

@@ -0,0 +1,87 @@
/**
******************************************************************************
* @file SHAL_TIM.h
* @author Luca Lizaranzu
* @brief Related to USART and SHAL_UART abstractions
******************************************************************************
*/
#include "SHAL_UART.h"
#include "SHAL_GPIO.h"
void SHAL_UART::init(UART_Pair_Key pair){
m_key = pair;
SHAL_UART_Pair uart_pair = getUARTPair(pair); //Get the UART_PAIR information to be initialized
//Get the SHAL_GPIO pins for this SHAL_UART setup
GPIO_Key Tx_Key = uart_pair.TxKey; //Tx pin
GPIO_Key Rx_Key = uart_pair.RxKey; //Rx pin
GET_GPIO(Tx_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
GET_GPIO(Rx_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
GET_GPIO(Tx_Key).setAlternateFunction(uart_pair.TxAlternateFunctionMask);
GET_GPIO(Rx_Key).setAlternateFunction(uart_pair.RxAlternateFunctionMask);
SHAL_UART_Enable_Register pairUARTEnable = getUARTEnableReg(pair); //Register and mask to enable the SHAL_UART channel
*pairUARTEnable.reg |= pairUARTEnable.mask; //Enable SHAL_UART line
}
void SHAL_UART::begin(uint32_t baudRate) volatile {
USART_TypeDef* usart = getUARTPair(m_key).USARTReg;
auto control_reg = getUARTControlRegister1(m_key);
SHAL_clear_bitmask(control_reg.reg, control_reg.usart_enable_mask); //Clear enable bit (turn off usart)
usart->CR1 = 0; //Clear USART config
SHAL_apply_bitmask(control_reg.reg, control_reg.transmit_enable_mask); //Enable Tx
SHAL_apply_bitmask(control_reg.reg, control_reg.receive_enable_mask); //Enable Rx
auto baud_rate_reg = getUARTBaudRateGenerationRegister(m_key);
uint32_t adjustedBaudRate = SystemCoreClock / baudRate;
SHAL_set_register_value(baud_rate_reg.reg,adjustedBaudRate);
SHAL_apply_bitmask(control_reg.reg, control_reg.usart_enable_mask); //Turn on usart
}
void SHAL_UART::sendString(const char *s) volatile {
while (*s) {//Send chars while we haven't reached end of s
sendChar(*s++);
}
}
void SHAL_UART::sendChar(char c) volatile {
auto ISR_non_fifo = getUARTISRFifoDisabled(m_key);
if(!SHAL_WAIT_FOR_CONDITION_MS((*ISR_non_fifo.reg & ISR_non_fifo.transmit_data_register_empty_mask) != 0, 500)){
PIN(B3).setHigh();
return;
}
auto transmit_reg = getUARTTransmitDataRegister(m_key);
SHAL_set_register_value_16(transmit_reg.reg, static_cast<uint16_t>(c));
}
SHAL_UART& UARTManager::get(uint8_t uart) {
if(uart > NUM_USART_LINES - 1){
assert(false);
//Memory fault
}
return m_UARTs[uart];
}