Compare commits

...

4 Commits

Author SHA1 Message Date
Ea-r-th
cb232ea55e I2C tested, main file now contains rough sample for use with DHT20 2025-09-18 01:19:03 -07:00
Ea-r-th
8ce717033a Added timeout wait functions to core 2025-09-17 20:07:17 -07:00
Ea-r-th
75132eb040 Changed I2C init order 2025-09-16 03:07:52 -07:00
Ea-r-th
7b32859c88 Added I2C clock config 2025-09-16 00:38:36 -07:00
5 changed files with 157 additions and 31 deletions

View File

@@ -22,6 +22,16 @@ void SHAL_init();
//Universal structs and defines ---------------------------
typedef bool (*condition_fn_t)(void);
#define SHAL_WAIT_FOR_CONDITION_US(cond, timeout_us) \
SHAL_wait_for_condition_us([&](){ return (cond); }, (timeout_us))
#define SHAL_WAIT_FOR_CONDITION_MS(cond, timeout_ms) \
SHAL_wait_for_condition_ms([&](){ return (cond); }, (timeout_ms))
//Currently configures systick to count down in microseconds
void systick_init();
@@ -30,6 +40,28 @@ void SHAL_delay_us(uint32_t us);
void SHAL_delay_ms(uint32_t ms);
template<typename Condition>
bool SHAL_wait_for_condition_us(Condition cond, uint32_t timeout_us) {
while (timeout_us--) {
if (cond()) {
return true; // success
}
SHAL_delay_us(1);
}
return false; // timeout
}
template<typename Condition>
bool SHAL_wait_for_condition_ms(Condition cond, uint32_t timeout_ms) {
while (timeout_ms--) {
if (cond()) {
return true; // success
}
SHAL_delay_ms(1);
}
return false; // timeout
}
//---------------------------------------------------------

View File

@@ -27,6 +27,8 @@ public:
/// \param readLen number of bytes to be read
void masterWriteRead(uint8_t addr,const uint8_t* writeData, size_t writeLen, uint8_t* readData, size_t readLen);
uint8_t masterWriteReadByte(uint8_t addr, const uint8_t* writeData, size_t writeLen);
/// Function to write an array of commands to an I2C device
/// \param addr Address of slave device
/// \param writeData Pointer to array of commands

View File

@@ -10,18 +10,29 @@ void SHAL_init(){
void systick_init(){
SysTick->CTRL = 0; //disable first
SysTick->LOAD = 0xFFFFFF; //max 24-bit
SysTick->VAL = 0; //clear
SysTick->CTRL = 0; //Disable first
SysTick->LOAD = 0xFFFFFF; //Max 24-bit
SysTick->VAL = 0; //Clear
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk | SysTick_CTRL_ENABLE_Msk;
}
void SHAL_delay_us(uint32_t us){
uint32_t start = SysTick->VAL;
uint32_t ticks = us * (SystemCoreClock / 1000000U);
//handle wraparound with 24-bit mask
while (((start - SysTick->VAL) & 0x00FFFFFF) < ticks) { }
void SHAL_delay_us(uint32_t us){
uint32_t ticks = us * (SystemCoreClock / 1000000U);
uint32_t start = SysTick->VAL;
//Calculate target value (may wrap around)
uint32_t target = (start >= ticks) ? (start - ticks) : (start + 0x01000000 - ticks);
target &= 0x00FFFFFF;
//Wait until we reach the target
if (start >= ticks) {
//No wraparound case
while (SysTick->VAL > target) {}
} else {
while (SysTick->VAL <= start) {} //Wait for wraparound
while (SysTick->VAL > target) {} //Wait for target
}
}
void SHAL_delay_ms(uint32_t ms){

View File

@@ -5,15 +5,21 @@
#include "SHAL_I2C.h"
#include "SHAL_GPIO.h"
#include "SHAL_UART.h"
void SHAL_I2C::init(I2C_Pair pair) volatile {
m_I2CPair = pair;
SHAL_I2C_Pair I2CPair = getI2CPair(pair); //Get the UART_PAIR information to be initialized
SHAL_I2C_Pair I2CPair = getI2CPair(pair); //Get the I2C_PAIR information to be initialized
//Get the SHAL_GPIO pins for this SHAL_I2C setup
GPIO_Key SCL_Key = I2CPair.SCL_Key; //SCL pin
GPIO_Key SDA_Key = I2CPair.SDA_Key; //SDA pin
SHAL_I2C_Enable_Reg pairI2CEnable = getI2CEnableReg(pair); //Register and mask to enable the I2C peripheral
*pairI2CEnable.reg &= ~pairI2CEnable.mask; //Enable I2C peripheral clock
GET_GPIO(SCL_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE); //Implicitly initializes and enables GPIO bus
GET_GPIO(SDA_Key).setPinMode(PinMode::ALTERNATE_FUNCTION_MODE);
@@ -30,13 +36,12 @@ void SHAL_I2C::init(I2C_Pair pair) volatile {
GET_GPIO(SCL_Key).setInternalResistor(InternalResistorType::PULLUP);
GET_GPIO(SDA_Key).setInternalResistor(InternalResistorType::PULLUP);
SHAL_I2C_Enable_Reg pairI2CEnable = getI2CEnableReg(pair); //Register and mask to enable the I2C peripheral
SHAL_I2C_Reset_Reg pairI2CReset = getI2CResetReg(pair);
*pairI2CReset.reg |= pairI2CReset.mask; //Reset peripheral
*pairI2CEnable.reg |= pairI2CEnable.mask; //Enable I2C peripheral clock
I2CPair.I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
*pairI2CReset.reg |= pairI2CReset.mask; //Reset peripheral
*pairI2CReset.reg &= ~pairI2CReset.mask; //Reset peripheral
}
void SHAL_I2C::setClockConfig(uint8_t prescaler, uint8_t dataSetupTime, uint8_t dataHoldTime, uint8_t SCLHighPeriod, uint8_t SCLLowPeriod) {
@@ -48,46 +53,68 @@ void SHAL_I2C::setClockConfig(uint8_t prescaler, uint8_t dataSetupTime, uint8_t
*clockReg.reg |= (dataHoldTime << clockReg.dataHoldTime_offset);
*clockReg.reg |= (SCLHighPeriod << clockReg.SCLHighPeriod_offset);
*clockReg.reg |= (SCLLowPeriod << clockReg.SCLLowPeriod_offset);
getI2CPair(m_I2CPair).I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
}
void SHAL_I2C::setClockConfig(uint32_t configuration) {
*getI2CTimerReg(m_I2CPair).reg = configuration;
getI2CPair(m_I2CPair).I2CReg->CR1 |= I2C_CR1_PE; //Enable I2C peripheral
}
void SHAL_I2C::masterWriteRead(uint8_t addr,const uint8_t* writeData, size_t writeLen, uint8_t* readData, size_t readLen) {
volatile I2C_TypeDef* I2CPeripheral = getI2CPair(m_I2CPair).I2CReg;
//Wait for I2C bus
while (I2CPeripheral->ISR & I2C_ISR_BUSY);
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_BUSY) == 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for not busy\r\n");
return;
}
//Write phase
if (writeLen > 0) {
//Configure: NBYTES = wlen, write mode, START
I2CPeripheral->CR2 = (addr << 1) |
(writeLen << I2C_CR2_NBYTES_Pos) |
I2C_CR2_START;
I2CPeripheral->CR2 = (addr << 1) | (writeLen << I2C_CR2_NBYTES_Pos) | I2C_CR2_START;
for (size_t i = 0; i < writeLen; i++) {
while (!(I2CPeripheral->ISR & I2C_ISR_TXIS)); // TX ready
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_TXIS) != 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for TX\r\n");
return;
}
I2CPeripheral->TXDR = writeData[i];
}
//Wait until transfer complete
while (!(I2CPeripheral->ISR & I2C_ISR_TC));
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_TC) != 0, 100)){
SHAL_UART2.sendString("I2C timed out waiting for TC\r\n");
return;
}
}
//Read phase
if (readLen > 0) {
I2CPeripheral->CR2 = (addr << 1) |
I2C_CR2_RD_WRN |
(readLen << I2C_CR2_NBYTES_Pos) |
I2C_CR2_START | I2C_CR2_AUTOEND;
SHAL_UART2.sendString("Read initiated\r\n");
I2CPeripheral->CR2 &= ~(I2C_CR2_NBYTES | I2C_CR2_SADD | I2C_CR2_RD_WRN);
I2CPeripheral->CR2 |= (addr << 1) |
I2C_CR2_RD_WRN |
(readLen << I2C_CR2_NBYTES_Pos) |
I2C_CR2_START | I2C_CR2_AUTOEND;
for (size_t i = 0; i < readLen; i++) {
while (!(I2CPeripheral->ISR & I2C_ISR_RXNE)); //RX ready
if(!SHAL_WAIT_FOR_CONDITION_MS((I2CPeripheral->ISR & I2C_ISR_RXNE) != 0 , 100)){
SHAL_UART2.sendString("I2C timed out waiting for RXNE\r\n");
return;
}
SHAL_UART2.sendString("Read byte");
readData[i] = static_cast<uint8_t>(I2CPeripheral->RXDR);
}
}
else{
I2CPeripheral->CR2 |= I2C_CR2_STOP;
}
}
void SHAL_I2C::masterWrite(uint8_t addr, const uint8_t *writeData, uint8_t writeLen) {
@@ -98,6 +125,12 @@ void SHAL_I2C::masterRead(uint8_t addr, uint8_t *readBuffer, uint8_t bytesToRead
masterWriteRead(addr,nullptr,0,readBuffer,bytesToRead);
}
uint8_t SHAL_I2C::masterWriteReadByte(uint8_t addr, const uint8_t *writeData, size_t writeLen) {
uint8_t val = 0;
masterWriteRead(addr, writeData, writeLen, &val, 1);
return val;
}
SHAL_I2C& I2CManager::get(uint8_t I2CBus) {
if(I2CBus > NUM_I2C_BUSES - 1){

View File

@@ -1,10 +1,44 @@
#include "SHAL.h"
#include "stm32f0xx.h"
#include <stdlib.h>
void c3Interrupt(){
PIN(A5).toggle();
UART(2).sendString("New test");
SHAL_UART2.sendString("Begin\r\n");
uint8_t cmd[3] = {0xAC, 0x33, 0x00};
SHAL_I2C1.masterWrite(0x38, cmd, 3);
SHAL_delay_ms(100);
uint8_t dht_buf[7] = {0};
//Read 7 bytes (status + 5 data + CRC)
SHAL_I2C1.masterRead(0x38, dht_buf, 7);
//Parse humidity (20 bits)
uint32_t rawHumidity = ((uint32_t)dht_buf[1] << 12) |
((uint32_t)dht_buf[2] << 4) |
((uint32_t)dht_buf[3] >> 4);
uint32_t rawTemp = (((uint32_t)dht_buf[3] & 0x0F) << 16) |
((uint32_t)dht_buf[4] << 8) |
((uint32_t)dht_buf[5]);
// Use 64-bit intermediate to avoid overflow
uint32_t hum_hundredths = (uint32_t)(((uint64_t)rawHumidity * 10000ULL) >> 20);
int32_t temp_hundredths = (int32_t)((((uint64_t)rawTemp * 20000ULL) >> 20) - 5000);
char out[80];
sprintf(out, "rawH=0x%05lX rawT=0x%05lX\r\n",
(unsigned long)rawHumidity, (unsigned long)rawTemp);
SHAL_UART2.sendString(out);
// print as X.YY
sprintf(out, "Temp: %ld.%02ld C, Hum: %ld.%02ld %%\r\n",
(long)(temp_hundredths / 100), (long)(abs(temp_hundredths % 100)),
(long)(hum_hundredths / 100), (long)(hum_hundredths % 100));
SHAL_UART2.sendString(out);
}
void tim2Handler(){
@@ -20,6 +54,7 @@ int main() {
SHAL_UART2.begin(115200);
SHAL_I2C1.init(I2C_Pair::SCL1B6_SDA1B7);
SHAL_I2C1.setClockConfig(0x2000090E);
//Use pin C3 to trigger a function on external interrupt
PIN(C3).useAsExternalInterrupt(TriggerMode::RISING_EDGE,c3Interrupt);
@@ -31,11 +66,24 @@ int main() {
PIN(A4).setPinMode(PinMode::OUTPUT_MODE);
PIN(A5).setPinMode(PinMode::OUTPUT_MODE);
SHAL_delay_ms(3000); //Wait 100 ms from datasheet
uint8_t cmd = 0x71;
uint8_t status = 0;
SHAL_I2C1.masterWriteRead(0x38, &cmd, 1, &status, 1);
char statusString[32];
sprintf(statusString, "Status = 0x%02X\r\n", status);
SHAL_UART2.sendString(statusString);
SHAL_delay_ms(10);
c3Interrupt();
SHAL_delay_ms(3000);
c3Interrupt(); //test
//End setup
while (true) {
__WFI();